Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Sci Rep ; 11(1): 2418, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054060

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is currently a global pandemic, and there are limited laboratory studies targeting pathogen resistance. This study aimed to investigate the effect of selected disinfection products and methods on the inactivation of SARS-CoV-2 in the laboratory. We used quantitative suspension testing to evaluate the effectiveness of the disinfectant/method. Available chlorine of 250 mg/L, 500 mg/L, and 1000 mg/L required 20 min, 5 min, and 0.5 min to inactivate SARS-CoV-2, respectively. A 600-fold dilution of 17% concentration of di-N-decyl dimethyl ammonium bromide (283 mg/L) and the same concentration of di-N-decyl dimethyl ammonium chloride required only 0.5 min to inactivate the virus efficiently. At 30% concentration for 1 min and 40% and above for 0.5 min, ethanol could efficiently inactivate SARS-CoV-2. Heat takes approximately 30 min at 56 °C, 10 min above 70 °C, or 5 min above 90 °C to inactivate the virus. The chlorinated disinfectants, Di-N-decyl dimethyl ammonium bromide/chloride, ethanol, and heat could effectively inactivate SARS-CoV-2 in the laboratory test. The response of SARS-CoV-2 to disinfectants is very similar to that of SARS-CoV.


Subject(s)
Disinfectants/pharmacology , Disinfection/methods , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/virology , Chlorine/chemistry , Chlorine/pharmacology , Disinfectants/chemistry , Ethanol/chemistry , Ethanol/pharmacology , Humans , Pandemics/prevention & control , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.03.20052175

ABSTRACT

Background: Respiratory and faecal aerosols play a suspected role in transmitting the SARS-CoV-2 virus. We performed extensive environmental sampling in a dedicated hospital building for Covid-19 patients in both toilet and non-toilet environments, and analysed the associated environmental factors. Methods: We collected data of the Covid-19 patients. 107 surface samples, 46 air samples, two exhaled condensate samples, and two expired air samples were collected were collected within and beyond the four three-bed isolation rooms. We reviewed the environmental design of the building and the cleaning routines. We conducted field measurement of airflow and CO2 concentrations. Findings: The 107 surface samples comprised 37 from toilets, 34 from other surfaces in isolation rooms (ventilated at 30-60 L/s), and 36 from other surfaces outside isolation rooms in the hospital. Four of these samples were positive, namely two ward door-handles, one bathroom toilet-seat cover and one bathroom door-handle; and three were weakly positive, namely one bathroom toilet seat, one bathroom washbasin tap lever and one bathroom ceiling-exhaust louvre. One of the 46 air samples was weakly positive, and this was a corridor air sample. The two exhaled condensate samples and the two expired air samples were negative. Interpretation: The faecal-derived aerosols in patients' toilets contained most of the detected SARS-CoV-2 virus in the hospital, highlighting the importance of surface and hand hygiene for intervention.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL